10 research outputs found

    Guidance on noncorticosteroid systemic immunomodulatory therapy in noninfectious uveitis: fundamentals of care for uveitis (focus) initiative

    Get PDF
    Topic: An international, expert-led consensus initiative to develop systematic, evidence-based recommendations for the treatment of noninfectious uveitis in the era of biologics. Clinical Relevance: The availability of biologic agents for the treatment of human eye disease has altered practice patterns for the management of noninfectious uveitis. Current guidelines are insufficient to assure optimal use of noncorticosteroid systemic immunomodulatory agents. Methods: An international expert steering committee comprising 9 uveitis specialists (including both ophthalmologists and rheumatologists) identified clinical questions and, together with 6 bibliographic fellows trained in uveitis, conducted a Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol systematic reviewof the literature (English language studies from January 1996 through June 2016; Medline [OVID], the Central Cochrane library, EMBASE,CINAHL,SCOPUS,BIOSIS, andWeb of Science). Publications included randomized controlled trials, prospective and retrospective studies with sufficient follow-up, case series with 15 cases or more, peer-reviewed articles, and hand-searched conference abstracts from key conferences. The proposed statements were circulated among 130 international uveitis experts for review.Atotal of 44 globally representativegroupmembersmet in late 2016 to refine these guidelines using a modified Delphi technique and assigned Oxford levels of evidence. Results: In total, 10 questions were addressed resulting in 21 evidence-based guidance statements covering the following topics: when to start noncorticosteroid immunomodulatory therapy, including both biologic and nonbiologic agents; what data to collect before treatment; when to modify or withdraw treatment; how to select agents based on individual efficacy and safety profiles; and evidence in specific uveitic conditions. Shared decision-making, communication among providers and safety monitoring also were addressed as part of the recommendations. Pharmacoeconomic considerations were not addressed. Conclusions: Consensus guidelines were developed based on published literature, expert opinion, and practical experience to bridge the gap between clinical needs and medical evidence to support the treatment of patients with noninfectious uveitis with noncorticosteroid immunomodulatory agents

    Genetic Drivers of Kidney Defects in the DiGeorge Syndrome

    Get PDF
    Background The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. Methods We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. Results We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10(-14)). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. Conclusions We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.)

    Keratouveitis caused by handling of a tarantula

    No full text

    Comparison of cerebrospinal fluid amyloidogenic nanoplaques with core biomarkers of Alzheimer's disease

    No full text
    Accurate biomarkers of Alzheimer’s disease (AD) are essential for early diagnosis and intervention. Available biomarkers are not sufficient to permit the monitoring of AD progression over time, and additional biomarkers are required. Measures of aggregated amyloid-β (Aβ) could be useful biomarkers for AD. Here, we investigate whether levels of Thioflavin-T (ThT) positive amyloid aggregates, i.e., nanoplaques, in cerebrospinal fluid (CSF) could serve as useful biomarkers for AD. One-hundred and eighteen memory clinic patients were AT(N) classified, and CSF nanoplaque concentrations were compared between patients on the “Alzheimer’s continuum” (A+ patients) and patients with “Normal AD biomarkers” or “Non-AD pathologic change” (A− patients). CSF nanoplaque concentrations and sizes were quantified using the novel ThT-Fluorescence Correlation Spectroscopy (ThT-FCS) assay, and core biomarkers (Aβ42, total tau and phosphorylated tau) were determined by enzyme-linked immunosorbent assays. We investigated the association between nanoplaque concentrations and core biomarkers, and the diagnostic value of nanoplaque levels. Nanoplaque levels were increased in A+ patients compared to A− patients. Nanoplaque concentrations were negatively associated with Aβ42, but not related to total tau or phosphorylated tau measures. Quantification of nanoplaques did not improve the classification of patients on the Alzheimer’s continuum compared to the core biomarkers alone. Dynamic changes in nanoplaques concentration and size throughout AD stages should be explored in longitudinal studies

    Amyloidogenic Nanoplaques in Blood Serum of Patients with Alzheimer's Disease Revealed by Time-Resolved Thioflavin T Fluorescence Intensity Fluctuation Analysis

    No full text
    Background: Biomarkers are central to current research on molecular mechanisms underlying Alzheimer’s disease (AD). Their further development is of paramount importance for understanding pathophysiological processes that eventually lead to disease onset. Biomarkers are also crucial for early disease detection, before clinical manifestation, and for development of new disease modifying therapies. Objective: The overall aim of this work is to develop a minimally invasive method for fast, ultra-sensitive and cost-effective detection of structurally modified peptide/protein self-assemblies in the peripheral blood and in other biological fluids. Specifically, we focus here on using this method to detect structured amyloidogenic oligomeric aggregates in the blood serum of apparently healthy individuals and patients in early AD stage, and measure their concentration and size. Methods: Time-resolved detection of Thioflavin T (ThT) fluorescence intensity fluctuations in a sub-femtoliter observation volume element was used to identify in blood serum ThT-active structured amyloidogenic oligomeric aggregates, hereafter called nanoplaques, and measure with single-particle sensitivity their concentration and size. Results: The concentration and size of structured amyloidogenic nanoplaques are significantly higher in the blood serum of individuals diagnosed with AD than in control subjects. Conclusion: A new method with the ultimate, single-particle sensitivity was successfully developed. The proposed approach neither relies on the use of immune-based probes, nor on the use of radiotracers, signal-amplification or protein separation techniques, and provides a minimally invasive test for fast and cost-effective early determination of structurally modified peptides/proteins in the peripheral blood, as shown here, but also in other biological fluids

    Amyloidogenic nanoplaques in cerebrospinal fluid: Relationship to amyloid brain uptake and clinical Alzheimer's disease in a memory clinic cohort

    No full text
    Background: Aggregation of amyloid-β (Aβ) is an early pathological event in Alzheimer’s disease (AD). Consequently, measures of pathogenic aggregated Aβ are attractive biomarkers for AD. Here, we use a recently developed Thioflavin-T-Fluorescence Correlation Spectroscopy (ThT-FCS) assay to quantify structured ThT-responsive protein aggregates, so-called nanoplaques, in the cerebrospinal fluid (CSF). Objective: The overall aim of this work was to assess whether ThT-FCS determined CSF nanoplaque levels could predict amyloid brain uptake as determined by 18F-Flutemetamol PET analysis. Further, we assess whether nanoplaque levels could predict clinical AD. Methods: Nanoplaque levels in the CSF from 54 memory clinic patients were compared between sub-groups classified by 18F-Flutemetamol PET as amyloid-positive or amyloid-negative, and by clinical assessment as AD or non-AD. Results: Nanoplaque levels did not differ between amyloid groups and could not predict brain amyloid uptake. However, nanoplaque levels were significantly increased in patients with clinical AD, and were significant predictors for AD when adjusting for age, sex, cognitive function, and apolipoprotein E (APOE) genotype. Conclusion: The concentration of nanoplaques in the CSF differentiates patients with clinical AD from non-AD patients

    Genetic Drivers of Kidney Defects in the DiGeorge Syndrome.

    No full text
    BACKGROUND: The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. METHODS: We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. RESULTS: We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10 CONCLUSIONS: We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.)

    Guidance on Noncorticosteroid Systemic Immunomodulatory Therapy in Noninfectious Uveitis

    No full text
    corecore